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Abstract- Intelligent automated decision support systems are now found to be very much useful in various 

fields. In bioinformatics and machine learning in general, there is a large variation in the predictive 

measures that are used to evaluate intelligent systems. If we do not assess the accuracy of model's prediction, 

a vital step in model development, its application will have little merit. This work critically discusses 

different approaches to assess predictive performance and various test statistics. Choice of assessing strategy 

or validation for a specific application helps in determining the suitability of the model and in comparing the 

performances of different modeling techniques. The purpose of this paper is to serve as an introduction to 

various important benchmarking parameters and as a guide for using them in research.  
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I.  INTRODUCTION 

Intelligence can be defined in different ways such as in terms of one's capacity of learning, understanding, 

planning, communication, problem solving, reasoning etc. A system showing intelligence is an intelligent system. 

Most of the techniques for building intelligent models stem from the discipline termed artificial intelligence (AI). 

Since the early 70's, one of the prime research fields in computer science is to make a computer system intelligent 

under the broad discipline AI.  

For judging the quality and quantity of human intelligence, IQ (Intelligent Quotient) is used as one of the 

benchmarking parameters. Likewise, EQ (Efficiency Quotient) for intelligent systems can be measured in a number 

of ways using different test statistics and data mining parameters. This study will reveal some such parameters with 

their relevant application areas and also their limitations keeping in mind the axiom of data mining that each data set 

is unique. This intends to help apply suitable benchmarking parameter(s) for a problem domain.  

Section 2 to section 8 explains different performance prediction measures; their strengths and limitations. Lastly, 

conclusions are summarized in section 9.  

II. CONFUSION MATRIX 

Accuracy of a classification model can be assessed by a confusion matrix. It summarizes predictive performance. 

In general, a confusion matrix is an n-dimensional square matrix, where n is the number of distinct target values. For 

a binary classification model, it is a two dimensional square matrix. It records the frequencies of each of the four 

possible types of prediction from analysis of test data:  

i) true positive i.e. positive cases in the test data with predicted probabilities greater than or equal to the 

probability threshold (correctly predicted): TP 
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ii) false positive i.e. negative cases in the test data with predicted probabilities greater than or equal to the 

probability threshold (incorrectly predicted): FP  

iii) true negative i.e. negative cases in the test data with predicted probabilities less than to the probability 

threshold (correctly predicted): TN  

iv) false negative i.e. positive cases in the test data with predicted probabilities less than to the probability 

threshold (incorrectly predicted): FN  

 

Figure 1 shows a confusion matrix which depicts prediction of instances for a binary classification model. 

 

 

Predicted 

Actual 

 Positive Negative 

Positive True Positive ( TP ) 
False Positive ( FP 

) 

Negative False Negative (FN) 
True Negative 

(TN) 

 Figure 1: Confusion Matrix 

 

Most commonly used test statistics derived from confusion matrix are given in Table 1 [1]. 

 

Table 1: Most commonly used test statistics derived from confusion matrix 

Measure Formula Meaning 

Precision TP/(TP+FP) Percentage of positive predictions those are correct. 

Recall/Sensitivit

y 
TP/(TP+FN) 

Percentage of positive labeled instances that were 

predicted as positive. 

Specificity TN/(TN+FP) 
Percentage of negative labeled instances that were 

predicted as negative. 

Accuracy 
(TP+TN)/(TP+FP+TN+F

N) 
Percentage of correct predictions. 

 

The name confusion matrix stems from the fact that it points out where the model gets confused i.e. makes 

incorrect prediction. It can be used not only to judge the classification performance, but also to judge the 

misclassification cost incurred by specifying the cost of right and wrong classification. Different problem domains 

need different measures to summarize prediction quality. For example-  

1) In a data set of 5000 instances, where only 50 instances are labeled as positive and the model predicts 

"Negative" for all instances. Here accuracy is 99% and specificity is 100%, but sensitivity is 0% indicating 

problem in the model.  

2) If in the above case the model predicts "Positive" for every instance, the sensitivity, specificity and accuracy 

will be 100%, 0% and 1%, respectively. Hence specificity and accuracy reflect that the classifier is 

problematic.  

3) Consider another case, wherein out of a data set of 5000 instances, 4950 instances are recorded as "Positive". 

If the model predicts "Positive" for every case, the sensitivity (100%) and accuracy (99%) reflect that the 

model performs well, but the specificity (0%) indicates problem in the model.  

4) If in the above case the model predicts "Negative" for every case the accuracy (1%) and sensitivity (0%) 

reflect that the model is problematic though the specificity is 100%.  

 

So, it can be proposed that without any knowledge of the distribution of data all the three measures are of equal 

importance to predict the performance of a model. It can also be shown that these three measures only are not 

sufficient to predict. Since in Biological applications the majority of the examples are negative [2], precision and 

sensitivity play an important role to evaluate the model. 
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III. AREA UNDER ROC CURVE 

A receiver operating characteristic (ROC) or simply ROC curve, a part of a field called "signal detection theory", 

is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is 

varied. It is created by plotting the fraction of true positives out of the total actual positives (TPR = true positive rate) 

against the fraction of false positives out of the total actual negatives (FPR = false positive rate), at various threshold 

settings. The Receiver Operating Characteristic (ROC) curve is a technique that is widely used in machine learning 

experiments representing a graphical plot that summarizes how a classification system performs and allows us to 

compare the performances of different classifiers. The area under the ROC curve is a measure of overall performance 

of a classification model. Generally, the higher the area under the ROC curve, the better the model performance. It is 

way to compare classification model quality by determining false positive and true positive rates at different 

probability thresholds. Besides model selection, the ROC also helps to determine a threshold value to achieve an 

acceptable trade-off between hit (true positives) rate and false alarm (false positives) rate. By selecting a point on the 

curve for a given model a given trade-off is achieved. This threshold can then be used as a post-processing parameter 

for achieving the desired performance with respect to the error rates. ROC analysis has been extended for use in 

visualizing and analyzing the behavior of diagnostic systems [3]. The medical decision making community has an 

extensive literature on the use of ROC graphs for diagnostic testing [4]. The true positive rate (TPR), also called 

sensitivity of a classifier is evaluated as: 

TPR=TP/(TP+FN) 

 

The false positive rate (FPR) of classifier is estimated as: 

FPR = FP/(FP+TN)=1- specificity 

 

ROC graphs are two dimensional plots in which TPR is plotted on the Y-axis and FPR, i.e. 1-specificity is plotted 

on the X-axis. A discrete classifier produces a pair (FPR, TPR) that corresponds to a single point in ROC space. Fig. 

2 shows ROC graph with five classifiers labeled A through E [5]. 

 

 

 

Figure 2: Classifier performance- Points 

in ROC Space 

 Figure 3: Comparison of performance by 

AUC of classifier A and B [5] 

One can easily interpret different points in the ROC space. For example the point (0,0) indicates no false 

positive errors, but gains no true positives. The point (0,1) represents perfect classification. Informally, a point in 

ROC space is better than another if it is to the northwest of the first. The ROC space has two axes, each having a 

maximum value of 1. ROC curve is defined by plotting TPR against FPR across the range of possible thresholds. 

Each threshold value produces a different point in ROC space. ROC curve can be obtained by tracing these points. 

The area under ROC curve measures discrimination, that is, the ability of the test to correctly classify those with 

and without a specific property. 

An ROC curve represents following things- 

a) It shows the tradeoff between sensitivity and specificity.  

b) The closer the curve follows the left hand border and then the top border of the ROC space, the more 

accurate the test.  

c) The closure the curve comes to the 45˚ diagonal of the ROC space (1:1 line), the less accurate the test.  

d) The area under the curve (AUC) is a measure of classification accuracy.  
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In order to summarize predictive performance across the full range of thresholds we can measure the area under 

ROC curve (AUC), expressed as a proportion of the total area of the square defined by the axes [3]. The AUC 

ranges from 0.5 for models that are no better than random to 1.0 for models with perfect predictive ability. A rough 

guide for classifying the accuracy of a diagnostic test is the traditional academic point system, which is as follows–  

0.90-1.00 represents Excellent (A) 

0.80-0.90 represents Good (B) 

0.70-0.80 represents Fair (C)  

0.60-0.70 represents Poor (D) 

0.50-0.60 represents Fail (F)  

 

Limitations of ROC – It is possible for a high AUC classifier to perform worse in a specific region of ROC space 

than a low AUC classifier. In Figure 3 the high AUC classifier B performs worse than the low AUC classifier A for 

FPR > 0.6. 

 

IV. KAPPA STATISTIC 

The medical diagnostic test results will be of little use, if the people who interpret the test cannot agree on the 

interpretation. Kappa statistic, suggested by Cohen in 1960 [6], is a generic term for several similar measures of 

agreement used with categorical data. Typically it is used in assessing the degree to which two or more raters, 

examining the same data, agree when it comes to assigning the data to categories. Kappa might be used to assess the 

extent to which radiology analysis of an X-ray, computer analysis of the same X-ray and biopsy agree in labeling a 

growth as malignant or benign. In recent years, the Kappa coefficient of agreement has become the de facto for 

evaluating inter-coder agreement for tagging tasks.  

For example, let us consider two observers, denoted by rater A and rater B, classify 100 subjects into one of two 

possible classes, labeled as 1 and 2. The Kappa value is calculated based on the difference between the observed 

agreement (how much agreement is actually present) and the expected agreement (how much agreement would be 

expected to be present by chance alone). The data layout is given in Table 2. The observed agreement (Po) is the 

percentage of all frequencies for which two raters agree, i.e. (a + b) / (a + b + c + d). In the given example it is 

(25+60)/100 = 0.85. 

 

Table 2: Data Layout 

 Rater A 

 

Rater B 

1 
1 2 Total 

25(a) 10(b) 35(m1) 

2 
5(c) 60(d) 65(m0) 

30(n1) 70(n0) 100(n) 

 

(a) and (d) denote the number of times the two raters agree while (b) and (c) denote the number of times the two 

raters disagree.  

Expected agreement (Pe) is evaluated from the formula:  

Pe = [(n1/n) * (m1/n)] + [(n0/n) * (m0/n)] 

For the above example the value of Pe is:  

Pe = [(30/100) * (35/100)] + [(70/100) * (65/100)] 

= [0.3 * 0.35] + [0.7 * 0.65] = 0.56 

Kappa, K, is defined as: 

K=(Po-Pe)/(1-Pe) = (0.85 – 0.56) / (1 – 0.56) = 0.66 
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The value of Kappa lies between -1 to 1, where perfect agreement would equate to a Kappa of 1, chance 

agreement would equate to a Kappa of 0 and negative values indicate potential systematic disagreement between the 

observers. A common interpretation of Kappa is as given in Table 3 [7]. 

 

Table 3: Interpretation of Kappa 

Kappa Agreement 

<0 Less than chance agreement 

0.01 to 0.20 Slight agreement 

0.21 to 0.40 Fair agreement 

0.41 to 0.60 Moderate agreement 

0.61 to 0.80 Substantial agreement 

0.81 to 0.99 Almost perfect agreement 

 

Limitations of Kappa: Let us consider 100 subjects of two experiments are classified by Rater A and Rater B into 

one of two possible categories, labeled as 1 and 2. Table 4 and Table 5 show the outcomes of the experiments. 

 

Table 4: Outcomes of Experiment 1  Table 5: Outcomes of Experiment 2 

Rater B 
Rater A  

Rater B 
Rater A 

1 2 Total  1 2 Total 

1 25 8 33  1 81 9 90 

2 7 60 67  2 6 4 10 

Total 32 68 100  Total 87 13 100 

 

In both cases the observed agreement is 0.85. So, one may expect high inter-rater reliability for both cases (i.e. 

high value of Kappa). Cohen's Kappa for these two cases are 0.66 for Experiment 1 and 0.265 for Experiment 2. 

Thus Kappa statistic for Experiment 2 reflects the low level of agreement between the raters. It is very difficult to 

explain why raters have substantially high level of agreement for Experiment 1, while a fairly low agreement for 

Experiment 2. This paradox shows that there are serious conceptual flaws in Kappa statistics. 

V. AKAIKE INFORMATION CRITERIA (AIC) 

Akaike [8] adopted the Kullback-Leibler definition of information, I(f;g), as a natural measure of discrepancy, 

or asymmetrical distance, between a true model, f(y), and a proposed model, g(y|β), where β is a vector of 

parameters. Based on large sample theory, Akaike derived an estimator for I(f;g) of the general form: 

AICm = 2Km-2Ln(Lm) 

where Lm is the sample log-likelihood for the m
th
 of M alternative models and Km is the number of independent 

parameters estimated for the m
th
 model. AIC provides a means for selecting a model. For a given set of data, it is a 

measure of the relative quality of a statistical model. Using AIC, one can compare normal models, gamma models, 

lognormal models, square root normal models etc. Various features of AIC are as follows:  

1) AIC does not provide a test for a model. It is used to select the best among two or more competing models.  

2) A min (AIC) strategy [7] is used for selecting a model from a set of candidate models. Given a set of 

candidate models, the perfect model is the one with the minimum AIC value, specific to given data set.  

3) AIC can compare models with different error distribution.  

4) A potential danger arises in count regression models, where the natural data generating mechanisms might be 

Poisson, negative binomial, etc. but we wish to include in this mix probability models that are more suitable 

for continuous responses: normal, lognormal, etc. 

A popular alternative to AIC presented by Akaike [9] and Schwarz [10] is Bayesian Information Criterion (BIC). In 

comparison with BIC, AIC is asymptotically optimal in selecting the model with the least mean squared error, 

under the assumption that the exact true model is not in the candidate set; BIC is not asymptotically optimal under 

the assumption. The AIC penalizes the number of parameters less strongly than the BIC. The difference between 

two BIC estimates may be good approximation to the natural log of the Bayes factor [11]. 
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VI. LIFT 

The lift curve helps to select a relatively small number of cases and to get a relatively large portion of the 

responders. Validation data set, input to construct a lift curve, has been "scored" by appending to each case the 

estimated probability that it will belong to a given class. The graph is plotted with the cumulative number of cases (in 

descending order of probability) on the X-axis and the cumulative number of true positives on the Y-axis as shown 

in fig. 4. A good classifier will give a high lift acting on only a few cases. The lift curve can also be considered as a 

variation on the receiver operating characteristic (ROC) curve. A lift chart graphically represents the improvement 

that a mining model provides when compared against a random guess and measures the change in terms of a lift 

score. By comparing the lift scores for various portions of data set and for different models, one can determine which 

model is best and which percentage of the cases in the data set would benefit from applying the model's predictions. 

So it is evident that:  

• Lift is a measure of effectiveness of a predictive model calculated as the ratio between the results obtained 

with and without the predictive model.  

• Model's performance can be assessed visually from lift charts.  

• The better will be the performance of the model if the area between the lift curve and the baseline is greater 

[12]. 

 
Figure 4: Lift Curve 

 

VII. CUMULATIVE GAIN 

It is calculated as follows:  

Gain = (Expected response using predictive model) / (Expected response from random mailing) 

 

It is the percentage of positive responses determined by the model across quantiles (In statistics points on a 

probability distribution function separated by the same fraction of the probability; there is an integrated probability 

of 1/n between two adjacent n-quantiles) of the applied data. Cases are typically divided into 10 or 100 quantiles 

against which cumulative gain (and Lift also) is reported. Cumulative gain for a given quantile is the ratio of the 

cumulative number of positive targets to the total number of positive targets. 

 

VIII. PROBABILITY THRESHOLD 

Conversion of continuous model output into binary predictions is useful to predict "Present" or "Absent" by 

setting a threshold probability value above which the species is predicted to be "Present". Different threshold 

probability values result in different false positive rates and true positive rates. This approach is not suitable in 

many circumstances notably when some records are not available [13]. Different methods used to select probability 

threshold are listed in Table 6.  
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Table 6. Some published methods for setting threshold of occurrence [14, 15] 

Method  Procedure  
Species data 

type  

Refere

nce(s)  

Fixed value  An arbitrary fixed value (e.g. probability = 0.5)  
Presence 

only  
[16, 17]  

Lowest predicted 

value  

The lowest predicted value corresponding with an 

observed occurrence record  

Presence 

only  
[18, 19]  

Fixed sensitivity  

The threshold at which an arbitrary fixed 

sensitivity is reached (e.g. 0.95, meaning that 95% 

of observed localities will be included in the 

prediction)  

Presence 

only  
[ 20 ]  

Sensitivity-specificity 

equality  

The threshold at which sensitivity and specificity 

are equal  

Presence and 

absence  
[ 20 ]  

Sensitivity-specificity 

sum maximization  
The sum of sensitivity and specificity is maximized  

Presence and 

absence  
[ 21]  

Maximize Kappa  
The threshold at which Cohen's Kappa statistic is 

maximized  

Presence and 

absence  
[22, 23]  

Average 

probability/suitability  
The mean value across model output  

Presence 

only  
[24]  

Equal prevalence  

Species' prevalence (the proportion of presences 

relative to the number of sites) is maintained the 

same in the prediction as in the calibration data.  

Presence and 

absence  
[24]  

 

If the purpose of modeling is to identify areas within which disturbance may impact a species negatively then the 

threshold may be set low to identify a larger area of potentially suitable habitat. In contrast, if the model was 

intended to identify potential introduction or reintroduction sites for an endangered species or species of 

recreational value, then it would be appropriate to choose a relatively high threshold. Choosing a high threshold 

reduces the risk of choosing unsuitable sites by identifying those areas with highest suitability [25]. 

IX. CONCLUSION 

From the present study, it is revealed that no single approach from the above can be recommended for all 

applications. The choice of selecting performance parameters depend on the model and the type of data available. 

In general, four measures, viz. precision, sensitivity, specificity, classification accuracy i.e. the entire confusion 

matrix should be recommended as performance prediction parameters without any knowledge of the distribution of 

data. Area under receiver operating characteristic also plays an important role to depict performance of a model. 

Other parameters are used to compare models and to enhance the performance of models. 
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